Exercise 33

Find an equation of the tangent line to the curve at the given point.

$$
\begin{equation*}
y=\ln \left(x^{2}-3 x+1\right) \tag{3,0}
\end{equation*}
$$

Solution

The aim is to find the slope of the tangent line at $x=3$, so start by taking the derivative of the function with respect to x by using the chain rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x} \ln \left(x^{2}-3 x+1\right) \\
& =\frac{1}{x^{2}-3 x+1} \cdot \frac{d}{d x}\left(x^{2}-3 x+1\right) \\
& =\frac{1}{x^{2}-3 x+1} \cdot(2 x-3) \\
& =\frac{2 x-3}{x^{2}-3 x+1}
\end{aligned}
$$

Set $x=3$ to get $y^{\prime}(3)$.

$$
y^{\prime}(3)=\frac{2(3)-3}{(3)^{2}-3(3)+1}=\frac{3}{1}=3
$$

Then use the point-slope formula to get the equation of the tangent line.

$$
\begin{gathered}
y-0=y^{\prime}(3)(x-3) \\
y-0=3(x-3) \\
y=3 x-9
\end{gathered}
$$

